ADVANCED PLACEMENT PHYSICS C: ELECTRICITY AND MAGNETISM TABLE OF INFORMATION

	CONVEDCION EXCTORS
CUNSTANTS AND	CONVERSION FACTORS

Coulomb constant, $k = \frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$

Vacuum permittivity, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$

Vacuum permeability, $\mu_0 = 4\pi \times 10^{-7} \text{ (T} \cdot \text{m)/A}$

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$ Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Elementary charge, $e = 1.60 \times 10^{-19} \text{ C}$

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$

1 unified atomic mass unit, $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Magnitude of the acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at Earth's surface, g = 9.8 N/kg

UNIT SYMBOLS		
ampere,	A	
coulomb,	С	
electron volt,	eV	
farad,	F	
henry,	Н	
hertz,	Hz	
joule,	J	
kilogram,	kg	
meter,	m	
newton,	N	
ohm,	Ω	
second,	S	
tesla,	Т	
volt,	V	
watt,	W	

PREFIXES			
Factor	Prefix	Symbol	
10 ¹²	tera	Т	
10 ⁹	giga	G	
10^{6}	mega	M	
10^{3}	kilo	k	
10^{-2}	centi	c	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10 ⁻⁹	nano	n	
10^{-12}	pico	p	

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- The electric potential is zero at an infinite distance from an isolated point charge.
- The direction of current is the direction in which positive charges would drift.
- All batteries, wires, and meters are assumed to be ideal unless otherwise stated.

ELECTRICITY AND MAGNETISM

A = area

C = capacitance

E = electric field

J = current density

d = distance

I = current

 $\ell = length$

P = power

q = charge

Q = charge

position

volume

density

 $\Phi = \text{flux}$

R = resistance

t = time

F =force

$\left \vec{F}_E \right = \frac{1}{4\pi\varepsilon_0} \frac{\left q_1 q_2 \right }{r^2} = k \frac{\left q_1 q_2 \right }{r}$
$\vec{E} = \frac{\vec{F}_E}{q}$
$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \hat{r}$
$\Phi_E = \int \vec{E} \cdot d\vec{A}$
$\oint \vec{E} \cdot d\vec{A} = \frac{q_{\rm enc}}{\varepsilon_0}$
$Q_{\text{total}} = \int \rho(r) dV$
$U_E = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$
$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$
$\Delta V = -\int_{a}^{b} \vec{E} \cdot d\vec{r}$
$E_x = -\frac{dV}{dx}$
$\Delta U_E = q\Delta V$
$C = \frac{Q}{\Delta V}$
$C = \frac{\kappa \varepsilon_0 A}{d}$
$U_C = \frac{1}{2} Q \Delta V$
$\kappa = \frac{\mathcal{E}}{\mathcal{E}_0}$
$I = \frac{dq}{dt}$
$I = \int \vec{J} \cdot d\vec{A}$
$\vec{E} = \rho \vec{J}$
$R = \frac{\rho \ell}{A}$

 $P = I\Delta V$

ELECTRICITY AND MA

$$A = \text{area}$$
 $C = \text{capacitance}$
 $d = \text{distance}$
 $E = \text{electric field}$
 $F = \text{force}$
 $I = \text{current}$
 $J = \text{current density}$
 $\ell = \text{length}$
 $P = \text{power}$
 $q = \text{charge}$
 $Q = \text{charge}$
 $r = \text{radius, distance, or position}$
 $R = \text{resistance}$
 $t = \text{time}$
 $U = \text{potential energy}$
 $V = \text{electric potential or volume}$
 $E = \text{electric permittivity}$
 $E = \text{electric constant}$
 $E = \text{flux}$
 $E = \text{flux$

$$\begin{split} R_{\text{eq},s} &= \sum_{i} R_{i} \\ \frac{1}{R_{\text{eq},p}} &= \sum_{i} \frac{1}{R_{i}} \\ \frac{1}{C_{\text{eq},s}} &= \sum_{i} \frac{1}{C_{i}} \\ C_{\text{eq},p} &= \sum_{i} C_{i} \\ \tau &= R_{\text{eq}} C_{\text{eq}} \\ \oint \vec{B} \cdot d\vec{A} = 0 \\ \vec{F}_{B} &= q \left(\vec{v} \times \vec{B} \right) \\ d\vec{B} &= \frac{\mu_{0}}{4\pi} \frac{I \left(d\vec{\ell} \times \hat{r} \right)}{r^{2}} \\ \vec{F}_{B} &= \int I \left(d\vec{\ell} \times \vec{B} \right) \\ \oint \vec{B} \cdot d\vec{\ell} &= \mu_{0} I_{\text{enc}} \\ B_{\text{sol}} &= \mu_{0} n I \\ \Phi_{B} &= \int \vec{B} \cdot d\vec{A} \\ \mathcal{E} &= \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_{B}}{dt} \\ |\mathcal{E}_{\text{sol}}| &= N \left| \frac{d\Phi_{B}}{dt} \right| \\ L_{\text{sol}} &= \frac{\mu_{\text{core}} N^{2} A}{\ell} \\ U_{L} &= \frac{1}{2} L I^{2} \\ \mathcal{E} &= -L \frac{dI}{dt} \\ \tau &= \frac{L}{R_{\text{eq}}} \\ \omega_{LC} &= \frac{1}{\sqrt{LC}} \end{split}$$

A = areaB = magnetic fieldC = capacitanceF =force I = current $\ell = length$ L = inductancen = number of loopsper unit length N = number of loops q = charger = radius, distance, or position R = resistancet = timeU = potential energyv = velocity or speed $\varepsilon = \text{emf}$ μ = magnetic permeability τ = time constant $\Phi = flux$ ω = angular frequency

MECHANICS

I		MECHA
	$\begin{aligned} v_x &= v_{x0} + a_x t \\ x &= x_0 + v_{x0} t + \frac{1}{2} a_x t^2 \\ v_x^2 &= v_{x0}^2 + 2 a_x \left(x - x_0 \right) \\ \Delta x &= \int v_x \left(t \right) dt \\ \Delta v_x &= \int a_x \left(t \right) dt \\ \vec{x}_{cm} &= \frac{\sum m_i \vec{x}_i}{\sum m_i} \\ \vec{r}_{cm} &= \frac{\int \vec{r} \ dm}{\int dm} \\ \lambda &= \frac{d}{d\ell} m(\ell) \\ \vec{a}_{sys} &= \frac{\sum \vec{F}}{m_{sys}} = \frac{\vec{F}_{net}}{m_{sys}} \\ \left \vec{F}_g \right &= G \frac{m_1 m_2}{r^2} \\ \left \vec{F}_f \right &\leq \left \mu \vec{F}_N \right \\ \vec{F}_s &= -k \Delta \vec{x} \\ a_c &= \frac{v^2}{r} = r \omega^2 \\ T &= \frac{1}{f} \end{aligned}$	$a = acceleration$ $E = energy$ $f = frequency$ $F = force$ $h = height$ $J = impulse$ $k = spring constant$ $K = kinetic energy$ $\ell = length$ $m = mass$ $M = mass$ $p = momentum$ $p = power$ $p = radius, distance, or position to test time T = period T = period$
	$K = \frac{1}{2}mv^{2}$ $W = \int_{a}^{b} \vec{F} \cdot d\vec{r}$ $\Delta K = \sum W_{i} = \sum F_{\parallel,i}d_{i}$ $\Delta U = -\int_{a}^{b} \vec{F}_{cf}(r) \cdot d\vec{r}$ $F_{x} = -\frac{dU(x)}{dx}$ $U_{s} = \frac{1}{2}k(\Delta x)^{2}$ $U_{G} = -G\frac{m_{1}m_{2}}{r}$ $\Delta U_{g} = mg\Delta y$	$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ $P_{\text{inst}} = \frac{dW}{dt}$ $\vec{p} = m\vec{v}$ $\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}$ $\vec{J} = \int_{t_1}^{t_2} \vec{F}_{\text{net}}(t)dt = \Delta \vec{p}$ $\vec{v}_{\text{cm}} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$

$$\omega = \frac{d\theta}{dt} \qquad a = \operatorname{acceleration} \\ d = \operatorname{distance} \\ \beta = \operatorname{frequency} \\ \beta = \theta_0 + \alpha t \qquad k = \operatorname{spring constant} \\ k = \operatorname{length} \\ k = \operatorname{length} \\ k = \operatorname{mass} \\ k = \operatorname{position} \\ k = \operatorname{mass} \\ k = \operatorname{mass$$

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base $C = circumference$	$a^2 + b^2 = c^2$
Triangle	Cylinder	S	h = height	$\sin\theta = \frac{a}{c}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$		$\ell = \text{length}$ $r = \text{radius}$ $s = \text{arc length}$	$\cos\theta = \frac{b}{c}$
Circle $A = \pi r^2$	Sphere		S = surface area V = volume w = width	$\tan \theta = \frac{a}{b}$
$C = 2\pi r$ $s = r\theta$	$V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$		θ = angle	β 90° a

VECTORS	CALCULUS	IDENTITIES
$ \vec{A} \cdot \vec{B} = AB\cos\theta$ $ \vec{A} \times \vec{B} = AB\sin\theta$ $ \vec{r} = (A\hat{i} + B\hat{j} + C\hat{k})$	$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$ $\frac{d}{dx}(x^n) = nx^{n-1}$	$\log(a \cdot b^{x}) = \log a + x \log b$ $\sin^{2} \theta + \cos^{2} \theta = 1$ $\sin(2\theta) = 2\sin\theta\cos\theta$
$\vec{C} = \vec{A} + \vec{B}$ $\vec{C} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$	$\frac{d}{dx}(e^{ax}) = ae^{ax}$ $\frac{d}{dx}(\ln ax) = \frac{1}{x}$	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	$\left \frac{d}{dx} \left[\sin(ax) \right] = a \cos(ax)$ $\frac{d}{dx} \left[\cos(ax) \right] = -a \sin(ax)$	
	$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$	
	$\int \frac{dx}{x+a} = \ln x+a $ $\int \cos(ax) dx = \frac{1}{a} \sin(ax)$	
	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$	